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ABSTRACT 
 

SPATIAL AND TEMPORAL CORRELATIONS  
OF FREEWAY LINK SPEEDS: AN EMPIRICAL STUDY 

SEPTEMBER 2012 

PIOTR RACHTAN 

A.S., SPRINGFIELD TECHNICAL COMMUNITY COLLEGE 
B.S.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 
M.S.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Song Gao 

 Congestion on roadways and high level of uncertainty of traffic conditions are major 

considerations for trip planning. The purpose of this research is to investigate the characteristics 

and patterns of spatial and temporal correlations and also to detect other variables that affect 

correlation in a freeway setting. 5-minute speed aggregates from the Performance Measurement 

System (PeMS) database are obtained for two directions of an urban freeway – I-10 between 

Santa Monica and Los Angeles, California. Observations are for all non-holiday weekdays 

between January 1st and June 30th, 2010. Other variables include traffic flow, ramp locations, 

number of lanes and the level of congestion at each detector station. A weighted least squares 

multilinear regression model is fitted to the data; the dependent variable is Fisher Z transform of 

correlation coefficient.   

 Estimated coefficients of the general regression model indicate that increasing spatial and 

temporal distances reduces correlations. The positive parameters of spatial and temporal distance 

interaction term show that the reduction rate diminishes with spatial or temporal distance. Higher 

congestion tends to retain higher expected value of correlation; corrections to the model due to 

variations in road geometry tend to be minor.  The general model provides a framework for 
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building a family of more responsive and better-fitting models for a 6.5 mile segment of the 

freeway during three times of day: morning, midday, and afternoon. 

 Each model is cross-validated on two locations: the opposite direction of the freeway, and 

a different location on the direction used for estimation. Cross-validation results show that 

models are able to retain 75% or more of their original predictive capability on independent 

samples. Incorporation of predictor variables that describe road geometry and traffic conditions 

into the model works beneficially in capturing a significant portion of variance of the response. 

The developed regression models are thus transferrable and are apt to predict correlation on other 

freeway locations. 



www.manaraa.com

vi 
 

TABLE OF CONTENTS 
 

                Page 

ACKNOWLEDGMENTS………………………………………………………………………..iii 

ABSTRACT………………..…………………………………………………………………….iv 

LIST OF TABLES………...……………………………………………………………………viii 

LIST OF FIGURES………………………………………………………………………………ix 

CHAPTER             

1. INTRODUCTION……………………………………………………………………………...1 

 1.1 Background……………………………………………………………………………1 
 1.2 Literature Review……………………………………………………………………...1 
 1.3 Research Objectives…………………………………………………………………...4 
 1.4 Expected Contribution………………………………………………………………...5 
 1.5 Paper Organization…………………………………………………………………….5 

 

2. PRELIMINARY ANALYSIS (PART I): I-10 EASTBOUND………………………………...6 

 2.1 Setting and Data Description………………………………………………………….6 
 2.2 Spatial Correlation Analysis…………………………………………………………..7 

 
  2.2.1. Methodology………………………………………………………………..7 
  2.2.2 Results……………………………………………………………………….8 

 
 2.3 Temporal Correlation Analysis………………………………………………………10 

 
  2.3.1 Methodology……………………………………………………………….10 
  2.3.2 Results……………………………………………………………………...11 

 
 2.4 Adaptive Link State Method…………………………………………………………14 
 2.5 Preliminary Regression………………………………………………………………15 

 
  2.5.1 Model………………………………………………………………………15 
  2.5.2 Evaluation………………………………………………………………….17 

 
3. PRELIMINARY ANALYSIS (PART II): I-880 NORTHBOUND………….……………….19 



www.manaraa.com

vii 
 

 3.1 Setting and Data Description………………………………………………………...19 
 3.2 Spatial Correlation Analysis……...………………………………………………….19 
 3.3 Temporal Correlation Analysis………………………………………………………20 

 
4. PRELIMINARY FINDINGS SUMMARY…………………………………………………...22 

5. ANALYSIS – FINAL STAGE………………………………………………………………..23 

 5.1 Background and Motivations………………………………………………………...23 
 5.2 Methodology and Literature Review on Correlation Modeling……………………..24 
 5.3 Data…………………………………………………………………………………..26 

 
  5.3.1 Final Analysis Setting……………………………………………………...26 
  5.3.2 Filtering…………………………………………………………………….26 
  5.3.3 Additional Information…………………………………………………….27 

 
 5.4 Regression……………………………………………………………………………30 

 
  5.4.1 Pool of Predictor Variables………………………………………………...30 
  5.4.2 Model Selection Procedure………………………………………………...31 

 
   5.4.2.1 24-Hour, Full Segment Models…………………………………..31 
   5.4.2.2 Daytime, Full Segment Models………………………………….32 
   5.4.2.3 Full-Day, Partial Segment Model………………………………..33 
   5.4.2.4 Three Models, Partial Segment………………………………......33 

 
  5.4.3 Model Diagnostics and Results…………………………………………….34 
  5.4.4 Morning Model Evaluation………………………………………………...37 
  5.4.5 Midday Model Evaluation ………………………………………………...39 
  5.4.6 Afternoon Model Evaluation………………………………………………41 

 
6. CROSS-VALIDATION……………………………………………………………………….44 

 6.1 Background and Motivations………………………………………………………...44 
 6.2 Location 1: I-10 Westbound…………………………………………………………44 
 6.3 Location 2: I-10 Eastbound (Beginning)…………………………………………….47 
 6.4 Cross-Validation Summary…………………………………………………………..50 

 
7. OTHER MODELING STRATEGIES………………………………………………………...52 

8. CONCLUSIONS AND RECOMMENDATIONS……………………………………………55 

 8.1 Summary……………………………………………………………………………..55 
 8.2 Recommendations for Future Research……………………………………………...55 

 



www.manaraa.com

viii 
 

APPENDICES…………………………………………………………………………………...57 

1. LAYOUT SCHEMATICS OF INTERSTATE 10 BETWEEN PM 0 AND PM 12.50,  
 BOTH DIRECTIONS………………………………………………….………………58 

 
2. DATA FILTERING PROCESS – FREQUENCY OF % OBSERVED DATA...……..59 

 
 3. SPEED-FLOW DIAGRAMS FOR I-10 E-W WITH CONGESTION                                         
 THRESHOLDS INDICATED…………………………………………………………...62 

 
  A.EASTBOUND DIRECTION..…………………………………………..…...62 

 
 B. WESTBOUND DIRECTION..………………………………………………69 

 
 4. TRAFFIC CONDITION FREQUENCY TABLES FOR DAYTIME PERIODS.....…74 

 
BIBLIOGRAPHY……………………………………………………………………………….81 

 



www.manaraa.com

ix 
 

LIST OF TABLES 

Table                               Page 

1. Preliminary Regression Results for Three Cases…………………..……………………….…16 

2.  Stable/Unstable Condition Thresholds for I-10 E Stations ………….……………………….29 

3.   Stable/Unstable Condition Thresholds for I-10 W Stations ………………….……………..29 

4.   Summary of the Final Models Estimated for Partial Segment of I-10 E ……………………35 

5.   Predictive Ability of the Regression Models on Three Independent Locations ……….……50 

6.  Performance Indicators of Station-to-Station Models ……………………………………….53 

 

  



www.manaraa.com

x 
 

LIST OF FIGURES 

Figure                            Page 
 

1. Spatial Correlation Patterns for Link 1 with All Other Links under Varied                        
Link Definitions………….…………….………………………………………………………….9 

 
2. Spatial Correlations for Link 1 with All Other Links Calculated Using the         

Base Setup; a) During Peak, b) During Off-Peak Periods....................................................…...10 
 

3. Temporal Correlation Patterns a) During, and b) After Morning Rush Hour.………………..11 
 

4. Temporal Correlations Into- and After the Peak..………………………………….………….12 
 

5.  Temporal Correlation Patterns for 7:00, 8:30, and 10:00 with All Other Periods         
Over the Entire 6-Hour Analysis……….………………….…………………………….………13 

 
6.  Spatial Correlation Patterns for  a) Link 1, and b) Link 6 with All Other Links on             
I-880 N...............………………………………………………………………………...……….20 

 
7. Temporal Correlation Patterns for a) 2:00 pm and b) 4:00 pm with All Other Time   
Periods……………………………………………………………………………………………21 

 
8. Morning Model: Observed vs. Predicted Spatial Correlation. a) PM=7.05 at 9:00,             
b) PM=10.79 at 9:00……………….…………………………………………………………….38 

 
9. Morning Model: Observed vs. Predicted Temporal Correlation. a) PM=6.86 at 10:00,               
b) PM=8.07 at 7:00………………...…………………………………………………….………39 

 
10. Midday Model: Observed vs. Predicted Spatial Correlation. a) PM=5.64 at 12:00,                   
b) PM=10.79 at 12:00………………...………………………………………………………….40 

 
11. Midday Model: Observed vs. Predicted Temporal Correlation. a) PM=5.64              
at 14:00, b) PM=8.07 at 14:00…………………………………………………...………………41 

 
12. Afternoon Model: Observed vs. Predicted Spatial Correlation. a) PM=7.05                         
at 17:00, b) PM=8.38 at 17:00…………………………………………………………..............42 

 
13. Afternoon Model: Observed vs. Predicted Temporal Correlation.                                     
a) PM=6.86 at 15:00, b) PM=10.07 at 17:00……………………………………………….……43 

 
14. Spatial Correlation Cross-Validation, Observed vs. Predicted (I-10 W). a) Morning:   

PM=6.58, 9:00, b) Midday: PM=10.45, 12:00, c) Afternoon: PM=11.96, 17:00…………...…45 
 



www.manaraa.com

xi 
 

15. Temporal Correlation Cross-Validation, Observed vs. Predicted (I-10 W).  a) Morning:  
PM=11.96, 8:30, b) Midday: PM=10.79, 13:00, c) Afternoon: PM=9.38,15:00………………...46 

 
16. Spatial Correlation Cross-Validation (I-10 E, beginning). Observed vs. Predicted. a) Morning 
PM=2.35, 9:00, b) Midday: PM=4.00, 12:00, c) Afternoon: PM=4.00, 17:00…………………..48 

 
17. Temporal Correlation Cross-Validation (1-10 E, beginning). Observed vs. Predicted. a)   
Morning: PM 0.17, 10:00; b) Midday: PM=0.17, 14:00; c) Afternoon: PM=1.77, 16:00………49 

 



www.manaraa.com

1 
 

CHAPTER 1 

INTRODUCTION  

1.1 Background 

According to Transportation Research Board (2009), congestion is a growing problem on the 

urban highways over the world, and it is becoming worse with the increasing number of 

commuters and random disruptions to the system, such as incidents, road work, bad weather, etc. 

In order to model traveler’s route choice decisions and provide reliable prediction of future 

traffic conditions along the chosen path, a stochastic time-dependent network is required to 

capture the uncertainties. 

 There usually exist strong stochastic dependencies among link speeds (or travel times), 

largely due to traffic flow propagations over time and space, or an event that affects capacities in 

a wide area. Network stochastic dependencies are generally required to capture the benefits of 

real-time information for network routing, since only through the dependencies over time and 

space can the knowledge of an incident at the current time result in a better prediction of traffic 

conditions in the future at different location within the network. However, the shape of 

correlation patterns is still largely unknown and, as the literature review shows, most of the 

research in the related areas either base on simplifying assumptions or ignore link correlation. 

1.2 Literature Review 

This section aims to present an overview of recent research efforts that are related to our link 

correlation study. Prediction of short-term future traffic condition on real-time basis can allow 

travelers to avoid existing or likely congestion. Zhang and Rice (2003) develop a linear 

prediction model with time-varying coefficients, but do not factor correlations into the 

procedure. Rice and van Zwet (2004) continue work on travel time prediction and use historical 
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travel times to estimate regression parameters. They present a method to predict travel times that 

is computationally effective, but estimated level of congestion is based on an assumption that 

travel times for a given travel path aim to their historical mean. By accounting for correlation, 

the prediction could be perhaps more computationally intensive, but more adaptive to traffic 

conditions changing during the trip. In their recent work, Samaranayake, Blandin and Bayen 

(2011) use a Bayesian network framework to learn its time-space dependencies using a structure 

learning algorithm. The algorithm is a simplified version of greedy-equivalence search algorithm 

based on assumptions that simplify traffic state evolution. Algorithm is tested using freeway 

loop-detector data to test the short-term forecasting accuracy of speed and travel times. 

 Others, like Gajewski and Rilett (2004) take correlation into account. They estimate link 

travel time correlation using Bayesian natural cubic splines – a nonparametric regression 

technique. From all mentioned, this is the only empirical study that tries to quantify the 

correlations that are not assumed, but from actual traffic data. Note that the correlations studied 

here are at the link level with aggregate traffic and day-to-day randomness, rather that at the 

vehicle level, as studied in Gajewski and Rilett with probe-vehicle data. Chandra and Al-Deek 

(2008) investigate the effect of upstream and downstream location information by checking 

cross-correlation of speeds at these locations relative to the current location of hypothetical 

traveler. They find significant relationship of speed with stations both upstream and downstream 

of the traveler. Tam and Lam (2009) use historical travel time estimates together with their 

updated temporal variance-covariance relationships to predict the travel times in the next five-

minute interval, and they show that use of the updated temporal variance-covariance 

relationships of travel times can greatly improve the accuracy of the short-term travel time 

prediction. Min and Wynter (2010) develop volume and speed forecasting models using 
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binomial spatio-temporal correlations based on simplified link condition - traffic condition may  

be either congested or free flowing. Although based on simple assumptions, their model achieves 

reasonable accuracy in short-term prediction of speed and volume.  

 Adaptive routing, investigated – among others – by Waller and Ziliaskopoulos (2002), 

who approach the problem with limited forms of spatial and temporal link cost dependencies. 

Given the cost of predecessor links, no further information is obtained through spatial 

dependence; limited temporal dependency assumes known link cost when the entrance node is 

reached. In contrast, Gao and Chabini (2006) study optimal routing policy problems with an 

assumption of complete dependencies; they recognize that capturing link correlations over time 

and space would potentially make the route choice models more realistic.  

 Other important research areas that deal with link correlation are studies on volume and 

Origin-Destination (OD) demand forecasting. Goel et al. (2005) explore correlations between 24-

hour segment volumes and prove that including correlation improves Average Annual Daily 

Traffic (AADT) prediction; however, large ratio of OD pairs to links may result in 

overestimation of correlation coefficients. Eom et al. (2006) develop a spatial regression model 

which considers spatial dependency effect (correlation). Their regression model gains overall 

predictive capability and accuracy over the ordinary least squares regression when strong 

correlations exist. Song et al.(2009) model correlation between OD demands during given time 

period (e.g. morning peak). They show that mean traffic flows are very sensitive to correlation 

changes and thus correlations significantly influence travelers’ path choice behaviors. A method 

to evaluate uncertainty of future demand is shown by Duthie et al. (2011).  

 Transportation planning and policy are also sensitive to spatial and temporal 

dependencies within a transportation network. Frejinger and Bierlaire (2007) capture correlation 
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among alternatives in a route choice problem. They introduce subnetwork to simplify the road 

network based on the original network’s road hierarchy. The modified multinomial logit model 

they propose captures correlation among paths by error components. Parent and LeSage (2010) 

develop a space-time dynamic model that relates commuting times with highway infrastructure, 

gasoline taxes and congestion. They find that spillover of spatial effects is substantially stronger 

than time impacts. They also find that neglecting of positive or negative correlations in analysis 

of variance of future travel times may lead to underestimation as large as 75%, or its 

overestimation by 100%, respectively. 

1.3 Research Objectives 

This research is a study of link speed correlations in a freeway setting. It aims to document the 

following: 

• to quantify correlations and measure the dependencies with regard to time and space 

separately using loop detector data from freeway corridors, determine how sensitive 

calculations are to link definition and time resolution; 

• to investigate correlation patterns over time and space simultaneously through  

a regression model; 

• to assess factors other than time and space that affect correlation; 

• to discuss the transferability of the findings to other freeway locations through the means 

of cross-validation; 

• to assess the potential of extending the research to arterial roadways or ideally a road 

network. 
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1.4 Expected Contribution 

The contribution of this study is to fill the gap of lack of empirical quantification of spatio-

temporal link correlation patterns. This study sets an important first step in explaining link 

correlation phenomena and may potentially serve as a springboard to develop more realistic 

models in areas such as: travel time prediction, origin-destination demand forecasting, adaptive 

routing, and transportation policy evaluation and planning.  

1.5 Paper Organization 

The somewhat unusual structure of this thesis reflects the development and evolution of the 

research behind it. The ideas and motivations for improvement were grounded in the preliminary 

results (Chapters 2, 3 and 4). The actual final analysis is described and evaluated in Chapters 5 

and 6. Chapter 7 overviews an exploratory approach to modeling that uses samples only from 

adjacent stations. This is followed with conclusions, future research directions and contribution 

in the last chapter.  
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CHAPTER 2 

PRELIMINARY ANALYSIS (PART I): I-10 EASTBOUND 

2.1 Setting and Data Description 

The data for the primary model are obtained from California Department of Transportation 

Performance Measurement System (PeMS). The location chosen for development of the initial 

study is a 12.04 mile (19.38 km) segment of I-10 E freeway in Los Angeles vicinity. It stretches 

from mile post 0.17 in Santa Monica to mile post 12.21 at the intersection with I-110 in Los 

Angeles. The primary criterion for choosing this location is heavy congestion occurring on a 

daily basis with high predictability and along a considerable stretch of highway.  

 We choose to analyze only non-holiday weekdays from 7 am to 1 pm when the 

congestion is severe and occurs with high regularity. 5-minute speed data aggregates from period 

between March 1 2010 and June 30 2010 from 7:00 am to 12:59:59 pm are obtained for a total of 

87 weekdays from all 41 loop detector stations operated by PeMS along this segment.  

 Initial scoping of the data sets detects unrealistic speed readings on stations that have 

been out-of-order during the study period. Those data were produced by the “imputation” 

algorithm implemented by PeMS. We decide to ignore those stations’ readings and filter out data 

from other stations (some of which have been shut down for several days); thus, only high 

quality readings (detector health at 50% or better) are used for numerical analyses. Filtering 

process of data reduces the number of acceptable detectors to 34.   
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2.2 Spatial Correlation Analysis 

2.2.1 Methodology 

As commonly known and studied from the earliest years by traffic engineering researchers, 

congested traffic behavior differs greatly from traffic behavior in uncongested state. Peak hour 

for this I-10 E segment has been determined by finding a significant drop in speed that occurs 

with some regularity between 7:30 and 9:30 am. Separate analyses are performed for peak hour 

(7:30-9:30 am) and off-peak hours (9:30 am-12:59 pm). For this stage of research, peak/off-peak 

period have been specified by visual inspection of speed/flow plots on randomly selected links 

and days. Mean peak hour speed xP=39.38 mph (63.40 km/h), mean off-peak speed xOP=56.49 

mph (90.95 km/h). In our future work, we may consider using flow information to set a threshold 

above which link is considered congested.  

 5-minute speed aggregates are first grouped using one of the link setups presented below; 

mean values (over peak, or off-peak hour) of aggregates are taken across each link generating a 

single mean speed value at each day for each link. This is followed by the removal of remaining 

missing values that survived the filtering process (usually less than 5%). Then, Pearson’s 

correlation coefficients between each pair of the average link speeds are calculated, resulting in a 

n by n correlation matrix, where n is the number of links. The sample size in calculating 

correlation coefficients is the number of days (87) less missing values (explained below). 

 Given the filtered data, several link definitions are considered to explore the influence of 

data grouping on the correlations. First two setups are grounded in the physical features of the 

freeway and the latter two are based on the more arbitrary use of detector stations. The following 

link definitions are investigated:  
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- Base ramp-to-ramp setup – a link is defined as a stretch of the road between detector stations in 

the closest proximity of an exit ramp; all intermediate stations are averaged in the link speed. 

The boundary detector readings are used for link (i) as well as for link (i+1). The segment 

divides into 13 links when this definition is used. 

- Variation 1. Alternative ramp-to-ramp setup has the same basis as the base model with an 

exception of overlap – links start at a ramp and end before next ramp. Thus, boundary detector 

readings are used just once. Since the number of ramps does not vary, there are 13 links 

generated by this setup. Both variation 1 and base setup are referred to as “ramp-to-ramp setups” 

later in text. 

- Variation 2. A link is defined as a stretch of the road between two consecutive detector stations 

regardless of the distance. An average link speed is always of two detector data. This method 

yields 17 links. 

- Variation 3. Each link ‘contains’ 3 detector stations (with the exception of the last link which is 

only 1 station). 12 links generated by this definition share similarities with variation 2 (arbitrary 

number of stations used), but also with ramp-to-ramp setups since link length is often similar 

(approximately 1 mile).  

2.2.2 Results 

Following the investigation of the influence of varied link definitions on correlation pattern, 

Figure 1 depicts spatial correlation results for link 1 and other links using all four setups. Note 

that horizontal axis reflects distance in miles rather than link numbers. Horizontal lines represent 

links as defined by each setup; markers are detector stations. 
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 Ramp-to-ramp setups (base and variation 1) are preferred over the other two more 

arbitrary models because they follow freeway facilities and are more intuitive. In some cases, 

though, ‘arbitrary’ models may be preferred because their setup on the large scale can possibly 

be automated. Regardless of the setup used, the same trend is reflected in link correlations – link 

correlations ultimately drop to zero over the course of 12.04 miles. However, some differences 

exist: link correlation coefficients calculated with either ramp-to-ramp model (base and variation 

1) tend to fit in the middle between the other two setups. Base setup seems to produce a 

smoother correlation pattern; therefore it is used for the analyses that follow. 

 

Figure 1   Spatial Correlation Patterns for Link 1 with All Other Links under Varied  
  Link Definitions 
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The calculated spatial correlation coefficients for link 1 with all other links for base ramp-to-

ramp setup are gathered in Figure 2 with regard to peak and after peak situations. 

 

Figure 2    Spatial Correlations for Link 1 with All Other Links Calculated Using the  
  Base Setup; a) During Peak, b) During Off-Peak Periods 

 In both cases link correlations obviously drop with increased link distance; however, it 

seems that strong correlations are farther reaching during peak as off-peak correlations very 

quickly start to oscillate around zero. In addition, all peak correlations above 0.2 in value are 

statistically significant at the 0.05 level – that is not the case for off-peak. For peak period, 

sample size N=84 observations (days); for off-peak period N=80 (depending on the amount of 

missing values that needed to be removed from the initial 87 days). 

2.3 Temporal Correlation Analysis 

2.3.1 Methodology 

To minimize spatial influence on correlation, link definitions are ignored and a mean speed value 

across entire segment is taken. Similarly to the spatial analysis which deals with a few setups, 

four distinctive time periods are used in temporal analysis: 60-minute, 30-minute, 15-minute, and 

a) b) 
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raw 5-minute aggregates are used for calculating mean segment speed at different resolution. 

Following the methodology used for spatial analysis, any missing data is removed at a cost of 

slight reduction of sample size (number of days) to 79 from original 87 observations. Size of the 

square correlation matrix depends on the resolution and its dimension varies {[6 x 6], [12 x 12], 

[24 x 24], or [72 x 72]}, for 60-minute, 30-minute, 15-minute and 5-minute resolution, 

respectively. 

2.3.2 Results 

Similarly to the spatial correlation analysis, temporal correlation is studied for peak hour and the 

off-peak periods to investigate various correlation patterns under different traffic conditions. 

Temporal correlation pattern does not seem to significantly vary with the choice of resolution. 

Figure 3 shows temporal correlation patterns during 2-hour period during the morning rush and 

3.5-hour period after the morning rush with respect to the beginning of each period. These plots 

are at 5-minute resolution. 

 

Figure 3    Temporal Correlation Patterns a) During, and b) After Morning Rush Hour 

a) b) 
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 In both cases correlations are strongest within the first 30 minutes, which follows general 

intuition. Off-peak correlations tend to drop after that initial period, while peak correlations 

remain at high level (>0.8) for about 70 minutes deep into the peak (7:30-8:40) before a steep 

drop after that. Still, 2 hours during and 3.5 hours after morning rush seem to be too little time to 

result in no correlation. With sample sizes N=84 for peak period and N=80 after the morning 

peak, all correlation coefficients tend to be statistically significant at the 0.05 level. 

 It may be interesting to investigate how does correlation change during the free-flow-

congestion and congestion-free-flow transitions of traffic condition. Figure 4 depicts temporal 

correlations patterns for 7:00 am and 5-minute intervals within an hour (until 8:00 am) – when 

congestion is believed to build-up – plotted against correlations for 9:00 am and corresponding 

intervals within an hour (until 10:00 am), when congestion is assumed to dissipate. Horizontal 

axis represents 5-minute intervals that begin as marked and end 4:59 (min:sec) later (e.g. “0” 

means period from 7:00 to 7:04:59; “55” means period from 7:55 to 7:55:59; and similarly for 

periods starting at 9:00 am).  

 

Figure 4 Temporal Correlations Into- and After the Peak 



www.manaraa.com

13 
 

 For sample size N=86 for into peak to N=85 for after peak period, correlation coefficients 

are all statistically significant at the 0.05 level. It seems that speeds are much higher correlated 

when congestion dissipates that while it builds up. Near linear correlation drop is observed 

during after peak period and are still strong (near 0.7) after 1 hour. In contrast, correlation pattern 

during congestion build-up drops steeper and forms a sag-like shape. Within 30 minutes (this 

period coincides with 7:30 am, which is the beginning of peak and assumed congestion), 

correlation drops near the value of 0.5 when the pattern begins to flatten out. Possible 

explanation of the difference in correlation patterns at the edges of congestion is that congestion 

dissipation is a steadier process – there is less speed variability and dynamic changes in traffic 

condition than during congestion build-up. 

 Above analyses lack an answer to an important question: when does correlation reach 

zero? To observe this temporal correlation drop, it is necessary to use the whole 6 hour analysis 

period for calculations. Figure 5 depicts temporal correlations for analysis period between 7:00 

am and 12:59:59 pm. 

 

Figure 5    Temporal Correlation Patterns for 7:00, 8:30, and 10:00 with All   
  Other Periods Over the Entire 6-Hour Analysis 
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 As expected, correlation coefficients plot for 7:00 am, 8:30 am, and 10:00 am reveals that 

– over long enough time – temporal correlation not only drops to zero but also reaches negative 

values. Negative correlation occurs between 7:00 am (before rush hour) and 12:55 pm (after 

morning rush) with a value -0.351; similarly, the correlation between 8:30 am (rush) and 12:55 

pm takes a value of -0.2685. Both results are statistically significant for sample size N=72, 

despite the loss of significance when correlations are near-zero, roughly in the correlation range 

{-0.2, 0.2}. We suspect this unexpected finding may be due to fluctuations in flow, i.e. when 

more commuters choose to travel during or before peak hour (thus reducing mean speed in the 

early hours), less commuters do travel after the morning rush (thus speed is higher than average 

off-peak speed) as the total demand on one direction tends to remain constant. This hypothesis 

will be investigated in future work as it requires all-day data, preferably for both directions. It is 

also possible that this phenomenon is location specific to I-10 E, as temporal correlation drop is 

not observed in our investigation of I-880 N presented in Chapter 3.  

 Another interesting phenomenon in Figure 5 is the different slopes of the 8:30 am 

correlation curve before and after 8:30.To the left, there is a slow decrease and then a sharp 

decrease, while to the right there is a steady and moderate decrease; though 90 minutes away 

from 8:30 correlation on both sides reaches the same level of 0.4. No negative correlation occurs 

on the 10:00 am (after peak) curve. The slope before 10:00 am is much steeper (i.e. correlation 

drops more rapidly) than after 10:00 am. Some of the findings will be further discussed 

following the regression model in latter parts of Section 2.5. 

2.4 Adaptive Link State Method 

Somewhat arbitrary determination of whether links are congested or not – as described in section 

2.1 – is convenient, but offers very crude accuracy in terms of the real traffic condition. After 
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obtaining flow data, the actual traffic conditions on each link may be determined by setting a 

threshold quantity that will distinguish whether a link is congested or uncongested at any given 

time based on historical data for a link. This method is expected to provide day-specific 

adjustments to make correlation calculations adaptive to actual traffic conditions. In general, this 

approach follows an idea described in Jia et al. (2000), who suggested setting a threshold on loop 

detector occupancy below which free flow is assumed.  

2.5 Preliminary Regression 

2.5.1 Model 

Another approach to data organization is taken for development of the regression model for 

correlation prediction. The regression is done for time-dependent link speeds and combines the 

two separate, 1-dimensional analyses into a 2-dimensional (space and time) unified model. There 

is a mean speed value for each link at each time stamp (total of 13 x 72 = 936) per each of the 87 

observations (days). Base setup (described in section 3.2.1) is used as link definition. Missing 

data has not been removed but rather interpolated from adjacent readings from same detector 

stations. This procedure, also implemented by Rice and van Zwet(2004), is preferred at this stage 

since only a few missing values would mean unnecessary and troublesome removal of many 

thousand readings.  

 Based on this data set, correlation coefficients form a 936 by 936 element matrix. Since 

the matrix is symmetric, only elements from the lower triangle (including the diagonal of ones) 

are used for estimation of regression coefficients. Sample size N=438516, which is yielded by 

[(936)2/2+ 936/2], is valid for the responses (correlation coefficients) and is also the dimension 

of prediction parameters. A multilinear linear regression is fitted to the data and its parameter 

estimates are presented in Table 1. 
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Table 1    Preliminary Regression Results for Three Cases 

 

The model is applicable to 3 distinctive cases: 

- Peak–peak, which is the base case and works when correlation coefficient is calculated between 

two time intervals, both of which are during peak, or morning rush hour. The first row of 

parameters is applied in this case; 

-Peak–off-peak, applicable when calculating correlation coefficient between time interval during 

peak and time interval before/after the peak, or opposite. The second row of parameters provides 

corrections to the three parameters in the base case; 

-Off-peak–off-peak, this case covers all situations that relate pre-peak and after peak time 

intervals, including relations within the same interval (pre-peak to pre-peak). This case requires 

using the third row of parameters as corrections to the base case from Table 1. 

 Regardless of which case is considered, the first constant has been fixed to 1 to reflect the 

fact that correlation with self (for zero temporal and spatial distances) is equal to 1 by definition.  

The following variables are used in the regression model:  

- distance – number of links between the requested link and the link with which correlation is 

calculated {0,1,2….12}; “0” is for correlation within a single link, “12” is for correlation 

between first and last link. 

N=438516 R2=0.5687

constant 
(fixed) distance time_diff

distance* 
time_diff

distance* 
OP_dum

my

time_diff* 
OP_dum

my

distance* 
time_diff* 

OP_dummy

distance* 
OO_dum

my

time_diff* 
OO_dum

my

distance* 
time_diff* 

OO_dummy
1 -0.0634 -0.00330 +0.000312

-0.0107 -0.000168 +0.0000647
+0.00626 +0.000754 -0.0001933

t-test -328.01 -489.39 210.32 -36.861 32.766 -20.595 105.97 29.387 -68.336
standard 

error
1.93E-04 6.74E-06 1.484E-06 2.90E-04 0.0001911 8.192E-06 7.103E-06 2.201E-06 1.746E-06
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- time_diff – time difference in minutes between requested 5-minute interval and the interval with 

which correlation is calculated {0,5,10,15….355}; these values represent time difference to a 

beginning of correlated interval. Again, “0” is for correlation within a single 5-minute interval, 

while “355” is between intervals of 7:00-7:04:59 with 12:55-12:59:59. 

- OP_dummy – a dummy variable with values of “0” for peak-peak and off-peak–off-peak 

situations, or “1” when a combination of peak–off-peak situations occurs. 

- OO_dummy – a dummy variable with values of “0” for peak-peak and peak–off-peak 

situations, or “1” when a combination of off-peak–off-peak situations occurs. 

- the remaining variables are interaction terms that are simple multiplication of parameters in 

other variables; as indicated in Table 1. 

2.5.2 Evaluation 

All cases reflect correlation drop with increase of distance and time difference. Peak-peak case is 

controlled primarily by spatial distance, as the temporal term is of much smaller value. Off-

peak–peak situation tends to inflate temporal influence by almost 54%; yet, spatial term inflated 

by 17% is still much more significant in combined absolute value. Much steeper shape of 

temporal correlations during the first 60 minutes in Figure 5 (Off-peak–peak situations) when 

compared to left plot in Figure 3 (Peak-peak situations) agrees with this regression result. Off-

peak–off-peak case shows weakened influence of increasing difference in time (23% reduction) 

and space (10% reduction). Weaker drop of correlation over time is visible when two plots in 

Figure 3 are compared. Positive sign of the interaction term of distance and time difference 

indicates that it slows down the decrease of correlation with increase of spatial or temporal 

distance. This result confirms intuition, as correlation is caused primarily by flow propagation 

over finite time. As a result, the correlation between link 1 at 8:00 am and link 2 at 8:05 am is 
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potentially stronger than either that between links 1 and 2 at 8:00 am or that between link 1 at 

8:00 am and 8:05 am, since the vehicles on link 1 at 8:00 am and those on link 2 at 8:05 am are 

probably more or less the same. 

 There are two possible explanations of the larger influence of spatial distance. Along the 

12.04 mile (19.38 km) stretch, freeway geometry varies (changing number of lanes, different on- 

and off-ramp designs and so on), so different locations (links) can dissolve correlations quickly. 

Second, large on- and off-ramp traffic is likely to disturb the mainline traffic and make links less 

related across distance. Imagine an extreme case when there are no access ramps along a 

segment of considerable length, and the spatial correlation in such situation should be higher. On 

the other hand, temporal correlation is simpler and might only depend on the spatial distribution 

of demand.  
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CHAPTER 3 

PRELIMINARY ANALYSIS (PART II): I-880 NORTHBOUND 

3.1 Setting and Data Description 

To investigate the transferability of the initial findings to another freeway, a second analysis is 

done on the I-880 N (Nimitz Freeway) segment between Fremont (exit 15) and San Leandro 

(exit 31). The segment is 16.16 miles (26.02 km) long, stretching between detector stations at 

mile posts 14.89 and 31.05. PeMS data is gathered for the same 87 weekdays between March 1 

2010 and June 30 2010. 

 Inspection of speed patterns on random days in the chosen period indicated hardly an 

existence of a morning rush hour on this segment; instead, a long afternoon rush is observed. 

Therefore, 7 hour period from 1:00 pm to 8:59:59 pm is selected. Since a drop (or, more 

accurately – a strong variability) of aggregated speeds seems to occur roughly over the 

aforementioned 7 hour, we assume that entire period as afternoon rush and decide to omit off-

peak cases. There are 35 detectors along this stretch. Data quality is much better and requires 

significantly less data filtering. 

3.2 Spatial Correlation Analysis 

Following the previously defined “base setup”, links stretch from ramp to ramp. This method 

generates 13 links on I-880 N. Data is prepared as in section 3.2.1., with the difference of 7-hour 

period (instead of 6 hours for I-10 E). Spatial correlation is calculated after removal of missing 

values, and sample size N=73. Figure 6 shows spatial correlation coefficients for links 1 and 6 on 

left and right plot, respectively. 
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Figure 6 Spatial Correlation Patterns for  a) Link 1, and b) Link 6 with All Other  

  Links on I-880 N 

 Correlation seems to drop to about 0.5 – 0.6 level with the difference of just about 2 

links. This is true for both plots, as well as the fact that no correlation values below roughly 0.45 

appear. A quick comparison to Figure 2 reveals that spatial correlation patterns for I-880 N are 

significantly different from that of I-10 E. Even if the shape itself resembles that of off-peak 

correlation plot in figure 2, values are significantly higher and all correlations in Figure 6 are 

statistically significant at the 0.05 level. 

3.3 Temporal Correlation Analysis 

The methodology for calculating temporal correlations for I-10 E described earlier is followed 

for the I-880 N data set. Different resolutions in time dimension, however, have not been studied 

and only 15-minute resolution is available. As in previous section, no off-peak period has been 

differentiated within the 7 hour data set. Temporal correlation patterns are shown in figure 7. 

a) b) 
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Figure 7 Temporal Correlation Patterns for a) 2:00 pm and b) 4:00 pm with All Other 

  Time Periods 

 Note that all correlations are statistically significant at the 0.05 level for both plots. This 

is a major difference with discussion following Figure 5. Another one is that temporal correlation 

drops more abruptly on I-10, while I-880 does not reach near-zero values; not to mention the 

lack of observed existence of negative correlation. The correlation patterns in Figure 7 are more 

resembling of those in Figure 3, and correlations reach similar values. An important note needs 

to be mentioned, however, that plots in Figure 3 are done for 2 and 3.5 hour periods – not for a 7 

hour period as those in Figure 7; the difference in scale is very important. Given the considerable 

differences in correlation patterns between the two freeways, we believe that link correlation is 

likely to be location specific. 

  

a) b) 
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CHAPTER 4 

PRELIMINARY FINDINGS SUMMARY  

In this preliminary research, traffic data from two urban freeways are obtained using the PeMS 

database and analyzed to study the characteristics of stochastic dependencies among link speeds. 

All analyses confirmed that correlation of link speeds drops over temporal and spatial distances. 

We have shown that correlation patterns are not very affected by link definition choice for 

analysis; however, it may be viable to drop the link definition whatsoever and try to work on raw 

data instead of the averages.  

 Separating spatial and temporal dimensions gives an insight into each aspect while 

minimizing the effect of the other. Performing multivariate linear regression on combined spatio-

temporal data confirms the hypothesis that spatial distance has stronger negative effect on 

correlation than temporal distance, regardless of the overall segment traffic condition. Separate 

spatial and temporal analyses have been reiterated using the data from another location and their 

results suggest that link correlation patterns are location specific.  

 Although we have strived to follow our informed intuition to do the described work most 

accurately, we have found many venues for improvement. The flaws detected in the preliminary 

methodologies are listed together with motivations for improvement in the opening section of the 

following chapter. 
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CHAPTER 5 

ANALYSIS – FINAL STAGE 
 

5.1  Background and Motivations 

The exploratory character of the preliminary analysis allowed for some simplifications that now 

should be corrected in the development of a valid model and valid conclusions. First, the 

regression model was estimated for bounded and clustered response (correlation), which violated 

the assumption of constant error term variances (Neter et al., 1996).  

 Secondly, the initial study revealed the need to increase sample size. On many occasions, 

it was difficult to tell if a large p-value on correlation coefficient estimates was a result of 

insufficient sample size or simply indicated correlation that indeed was not different from zero. 

Increasing the sample size is aimed to address these doubts.  

 Thirdly, the preliminary analysis is done based on a specific definition of link; several 

such definitions have been explored, but all share a tendency to stabilize the correlation variation 

by using certain averaging scheme. Although the approach of using several stations’ readings as 

single link reading tends to improve fit of any regression model, such fit inflation may be 

sensitive to the link definition applied by the modeler. Moreover, the ramp-to-ramp link 

definition used to estimate the preliminary regression model has a different number of detector 

stations in each link. Thus, prediction error may vary with actual spatial distance. Again, the 

error variance is not constant for different levels of the predictor variable. For the above reasons, 

it was decided to use raw detector station readings instead of links.  

 In addition, as mentioned in previous sections, one of the key parameters that intuitively 

affects correlation – level of congestion – however based on exploration of historical speeds at 

several detector stations, it has been determined somewhat arbitrarily. Given many detector 
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stations along the analyzed segment and day-to-day or even minute-to-minute variation in traffic 

conditions, it is believed that such variation should be reflected in the predictor variables at an 

attainable level. This should improve the fit of the model by making it more responsive to traffic 

condition changes regardless if the given time of day is peak or off-peak. 

 Lastly, preliminary regression model does not take road geometry into account. The 

existence of on- or off-ramps has been known in traffic engineering to create disturbances to the 

traffic stream. On the other hand, increased number of mainline lanes reduces the density and 

vehicle-to-vehicle interaction. Therefore, inclusion of such information to the model may result 

in model’s increased robustness when it is transferred to a new location with different 

characteristics. On top of all other considerations, we believe this study should result in a model 

(or models) that can be valid for the entire day instead of just a peak hour. 

5.2  Methodology and Literature Review on Correlation Modeling 

In order to develop a regression model that satisfies the theoretical requirements, the 

methodology needs to be supported by research in the field of linear modeling of correlation 

coefficient.  

 A transformation given by Fisher (1928) is required to obtain a response variable from 

correlation that will ensure the homogeneity of variance, will be unbounded and its distribution 

will be approximately normal: 

  𝑤(𝑧) =  1
2
𝑙𝑛 �1+ r(z)

1− 𝑟(𝑧)
� , where w(z) is the Fisher Z transform and r(z) = ryx(z) is 

sample correlation coefficient estimated variable pair y and x for the given z.  

 According to Bartlett (1993), for moderately large samples we may assume that w(z) is 

approximately normally distributed and that the variance of z: 
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  𝑉𝑎𝑟 �𝑤(𝑧)� ≅  1
𝑛 − 3

 , where n denotes sample size for correlation coefficient 

estimation.  

 Bartlett points out; however, that Fisher Z transformation alone does not eliminate 

unequal variances of the error terms even though it is normally distributed, as confirmed by 

simulations described in Asuero, Sayago and González (2006). Since the variance depends on 

the sample size behind each sample correlation estimation, application of weighted least squares 

regression with weights Wk = (nk – 3), where k=1,2,…K and K is the total number of pairs. 

 To compare observed correlation to the predicted values produced by a regression model, 

transformation of Fisher Z’s back to correlation domain is necessary. To perform back-

transformation, the following formula is applied: 

 ȓ(z) = exp�2𝐸(𝑧)�−1
exp�2𝐸(𝑧)�+1

  , where ȓ(z) is the correlation predicted from E(z), the expected 

value of z. 

 To assess the general fit of a regression model to the observed sample correlation values 

(in this analysis: response yi), three statistical measures can be applied as follows: 

− Coefficient of determination R2 = 
𝑆𝑆𝑀
𝑆𝑆𝑇

 = 
𝑆𝑆𝑀

𝑆𝑆𝐸 +𝑆𝑆𝑀
  = 

∑ (𝑦�𝑖−𝑦�)2𝑖
∑ (𝑦𝑖−𝑦𝚤� )2𝑖 +∑ (𝑦�𝑖−𝑦�)2𝑖

 , where 

SST is the total sum of squares, SSM is the sum of squares in the model and SSE is the 

sum of squares error; 𝑦�𝑖 is prediction of the i-th realization of the response yi , and 𝑦� is 

the mean of the response. 

− Bias as an estimate of accuracy, bias = 1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)𝑛
𝑖=1  , where n denotes the number of 

observations of the response. 

− Estimate of precision, Standard error = �1
𝑛

 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1  . 
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5.3  Data 

5.3.1  Final Analysis Setting 

Similarly to the initial study, data in the actual analysis are 5-minute speed aggregates obtained 

by loop detectors operated by PeMS. Same 12.04 mile (19.38 km) stretch is used as in the initial 

analysis setting, but the eastbound segment of I-10 between PM (post mile) 0.17 and PM 12.21 

(a total of 41 detector stations) has been supplemented by the westbound segment of I-10 

between PM 11.96 and PM  0.17 (a total of 34 detector stations). Including the westbound 

direction serves several purposes: it assists the model building process by providing additional 

ability to consult another data set; it also provides an opportunity to transfer the model onto a 

location that has a different geometrical arrangement and experiences different traffic conditions. 

The geometrical arrangement of this bi-directional segment is shown in Appendix 1.   

 As mentioned in Section 5.1, initial analysis revealed a need to increase the sample size. 

Now, after expanding the study period by another two months, it stretches from January 4th, 2010 

to June 30th, 2010; a total of 127 non-holiday weekdays within this 6-month period. In addition, 

data are now for 24 hours, not just the morning rush hour. More observation days increase the 

sample size but also reduce the susceptibility for reporting interruptions. 24-hour data allows for 

estimation of more general model. Although all detectors experience short maintenance 

shutdowns over the relatively long six month period, some detectors have not been operating for 

extended periods of time. Such situation causes another potential variance stabilizing 

interference, as PeMS still does report the interpolated readings from problem stations.  

5.3.2  Filtering 

Filtering process begins with an assessment of data quality at each station. Quality reported by 

PeMS describes the percentage of detectors reporting for a given station; e.g. if a reading for a 3-
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lane freeway is 67%, it means that during that time period only 2 out of 3 detectors are working. 

First step of the filtering process involved the initial screening of the data for each station: if 

there are no observed data (i.e. quality=0%) for the entire period, then such station is removed 

from the data set. In this step, 7 stations for I-10 E and 4 stations for I-10 W were removed from 

further analysis. As indicated by the diagnostics of the filtering process (Appendix 2), a large 

number of observations with 0% report quality remained after the first filtering step. Following 

with step two, missing values are assigned in place of reported speed when data quality is less 

than 50%. Such action does not interfere with the time stamp for each observation, but missing 

values do not go into further analyses. To avoid losing large amounts of observed data, 50% data 

quality is chosen as a reasonable estimate of the traffic conditions. For a 4-lane highway, if one 

knows the situation on just two lanes, one can assume other two lanes are not very different; in 

other words, situations when one can encounter congested and free-flowing traffic on different 

lanes of the same direction at the same location are very rare. 

5.3.3 Additional Information 

Manual input is needed to include information not directly reported in the raw data. First of all –

since the link definition is dropped and speed readings are associated with specific locations – it 

is necessary to include physical location in post miles, not just use station ID’s. Using reports for 

both directions (PeMS Station Info I-10 E-W, 2012), post mile corresponding to each station ID 

for all stations that passed the first step of filtering process is assigned as variable post_mile.  

 From the same source tables, new variable ramp is created. Ramp value is equal to 1 if a 

station is associated with a presence of a ramp (no distinction is given between access and 

egress), ramp is equal to 0 otherwise.  
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 Again, using the same station inventory reports, variable num_lanes is also incorporated 

into the data sets. Its value is equal to the number of mainline lanes at a given station.  

  As first mentioned in the preliminary analysis report, the congestion level is often 

location specific; thus, new variable state is introduced through a multi-step procedure. It begins 

with taking both speed and total flow (aggregated from all lanes) readings to develop speed-flow 

diagrams for each station using best-possible data quality, preferably and in most cases above 

75%. Speed-flow plots, which are enclosed as Appendix 3, served to determine speed thresholds 

at which congestion occurs at a given station. In general, the attempt was to choose a speed 

reading which can conservatively indicate unstable traffic conditions (speed smaller than speed 

at capacity; in some cases taking care not to include lower speeds at the free-flow branch of a 

plot). The thresholds for I-10 E stations are listed in Table 2; thresholds for I-10 W stations are 

listed in Table 3.  

 With the stable/unstable condition thresholds assigned to each station using data from the 

entire analysis period, within each 5-minute reporting period determined is a proportion of 

unstable periods. This number is a continuous variable state, bounded between 0 (indicating 

100% stable conditions) and 1 (100% unstable conditions). The variable satisfies the 

requirements of an ‘adaptive’, localized indicator of traffic condition.  
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Table 2 Stable/Unstable Condition Thresholds for I-10 E Stations 

 
      

Speed Thresholds I-10 E 
Post 
Mile Speed 

Post 
Mile Speed 

0.17 72 6.59 54 
0.47 66 6.86 60 
0.93 61 7.05 71 
1.33 58 7.36 62 
1.77 60 7.64 62 
2.35 57 8.07 53 
2.52 61 8.14 56 
3.06 60 8.38 65 
3.46 63 9.38 61 
3.59 58 10.07 62 
4.00 58 10.29 61 
4.34 60 10.43 45 
4.58 63 10.79 63 
5.07 64 11.29 62 
5.64 50 11.79 70 
5.83 63 11.96 64 
6.21 53 12.21 62 

Table 3 Stable/Unstable Condition Thresholds for I-10 W Stations 

        

Speed Thresholds I-10 W 
Post 
Mile Speed 

Post 
Mile Speed 

11.96 62 6.21 60 
11.79 75 5.66 60 
11.51 62 5.07 60 
10.79 58 4.58 60 
10.45 55 4.30 62 
10.07 62 4.00 60 
9.38 68 3.46 60 
9.04 62 3.06 52 
8.90 62 1.97 62 
8.38 61 1.77 60 
8.14 56 0.93 62 
7.64 61 0.78 59 
7.05 60 0.47 61 

6.58 60 0.17 74 



www.manaraa.com

30 
 

5.4 Regression 

5.4.1 Pool of Predictor Variables 

From parameters introduced in the previous section, several derivative variables can be created 

after noting that estimation of each correlation coefficient pertains to a pair of speed readings 

from two time-space locations over a given sample size (number of observations available for 

that pair). Variables used in the model building are as follows:  

- Timediff – similar to preliminary definition (time_diff); for sample correlation ryx, timediff 

is the temporal distance in minutes between y and x. Due to the resolution of raw data, 

timediff increment is 5-minutes. 

- Miles – in contrast to the preliminary study, where distance indicated number of links 

between locations y and x. Miles is the absolute value of the difference in post miles for 

locations y and x, one whole unit of spatial distance is equal to 1 mile (1.61 km). 

- State – for the purpose of regression, variable state is the mean value of state at location y 

and state at location x. 

- OP_dummy – ‘peak-off-peak’ indicator variable derived from state in such a manner that 

traffic at a station is assumed congested when state ≥ 0.5, uncongested otherwise. Then, 

OP_dummy is equal to 1 if one, and only one of y and x locations is congested; otherwise, 

OP_dummy is equal to 0. 

- OO_dummy –‘off-peak-off-peak’ indicator variable based on the same simplification of 

stable/unstable traffic condition determination. OO_dummy is equal to 1 if both y and x 

are uncongested; otherwise, OO_dummy is equal to 0.  

- lanes – road geometry parameter, follows the same logic as state; it is a mean num_lanes 

from locations y and x. 
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- RN_dummy – another road geometry parameter; this ‘ramp-no-ramp’ indicator variable is 

based on the values of ramp in locations y and x. RN_dummy is equal to 1 if one, and 

only one of y and x locations is adjacent to ramp; otherwise, RN_dummy is equal to 0. 

- NN_dummy – this ‘no-ramp-no-ramp’ indicator variable complementary to RN_dummy in 

the same manner as OO_dummy complements OP_dummy. NN_dummy is equal to 1 if 

none of y and x locations is adjacent to a ramp; otherwise, NN_dummy is equal to 0.  

 Please note that state is mutually exclusive with OP_dummy and OO_dummy, as they 

convey the same information.  

5.4.2 Model Selection Procedure  

5.4.2.1 24-hour, Full Segment Models 

Various combinations of variables are used to estimate a model for 24-hour data on the entire I-

10 E segment. The primary objective is to achieve best fit using variable combinations that make 

physical sense; the secondary objective is to obtain the simplest model possible. To agree with 

the postulates laid out in Section 5.2, all models are using weighted least squares method; the 

response variable is Fisher Z transform. 

 Model building process starts with an additive model that only includes timediff and 

miles; then the basic model is expanded by interaction term, and then by squares of miles and 

timediff. Bartlett (1993) recommends using the quadratic model when variability in sample 

correlation is roughly uniform and estimated on continuous variable. These apply in this study 

and the model with both interaction term and quadratic terms has the best fit from all models 

using just spatial and temporal distance as predictors. These models are later referred to as 

‘simple’. The best simple model achieved adjusted R2=0.221. 
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 Next family of models, later referred to as ‘advanced’ incorporates usage of the 

additional variables from the pool to the simple model with the best fit. Advanced models are 

built by sequential addition of variables and interaction terms. For models to correctly behave 

when spatial and temporal distances are 0 (self-correlation) by leaving just the non-zero 

intercept, additional variables have to be interacted with either spatial or temporal distance; i.e. 

cannot exist ‘on their own’ in the model. Multiple scenarios are developed, including second 

degree interaction terms and interaction of additional variables with quadratic terms. The biggest 

model boasted 36 covariates; however, it did not offer significantly better fit than much smaller 

and more transparent models. The best general advanced model, with its adjusted R2=0.254 

achieved slightly better fit than the best simple model.  

5.4.2.2 Daytime, Full Segment Models 

The general models’ significantly worse performance to the model in the preliminary analysis is 

believed to have many reasons, among which:  

- the models try to describe relationships in the raw data, not the averages, as there are no 

links and observations are station-specific and vary more; 

- there are no ‘imputed’, interpolated values in the data; 

- night-time traffic is believed to have flows and traffic densities incomparably smaller 

than during daytime; also it is primarily free-flowing with correlations not significantly 

different from zero. 

 Since the first two causes are also among the primary motivations for the final analysis, 

they cannot be avoided. However, we decided that including night-time information in the model 

serves little purpose, and, by over-generalization on low-flow data regression loses its ability to 
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capture fine-scale variability of Z transform. Data is thus scaled to the 14-hour period between 

6:00 and 20:00.  

 Iterative model fitting similar to that of described in the previous section resulted in the 

significant improvement in fit for both simple model (adj. R2=0.358) and advanced model (adj. 

R2=0.361). Careful examination of the advanced model’s prediction of temporal and spatial 

correlation on observed vs. predicted (where predicted correlation is back-transformed from 

expected values of Fisher Z’s) plots revealed that the day-time model is still too general to 

capture sudden changes in correlation. 

5.4.2.3 Full Day, Partial Segment Model 

The segment’s physical arrangement during the first five post miles (later referred to as 

‘beginning’) seems to be quite different from what follows between Venice Boulevard 

(PM=5.64) and I-110 Interchange (PM=11.96). At the latter fragment, it is difficult to find any 

two consecutive stations without any ramps. It also seems to be congested more often than the 

beginning. Therefore, it was decided to use the latter fraction of the segment as the base for 

further model estimation in hope of improving the models’ prediction performance.  

 Downscaling the spatial dimension of the sample resulted in further improvement of the 

fit of the advanced model, which attained R2=0.465. Although the fit at this stage is far better 

than that of the original model described in Section 5.4.2.1, we noticed a pattern of improving 

model performance with each reduction of estimation data. The sample sizes are still very large 

and thus significant reductions do not lead to noticeable weakening of parameter estimates.  

5.4.2.4 Three Models, Partial Segment 

We have decided to follow with an investigation of how the traffic conditions look during each 

5-minute period over the 6-months of analysis. For this purpose, contingency tables are prepared, 
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in which percentage of stable/unstable conditions at all stations (on I-10 E, full segment) are 

shown for each 5-minute period of day (e.g. period number 73 indicates 6:00-6:04:59; period 

number 85 indicates 7:00-7:04:59, etc.). These tables serve the purpose of finding the beginning 

and end of typical rush hours during the day, but also to investigate the traffic condition changes 

within rush hours. It was found that peak hours are characterized by prolonged congestion, 

morning rush hour starts at 7:30 and ends at 9:50; afternoon peak starts at 13:25 and ends at 

19:45. Peak was determined by finding periods with percentage of congestion greater or equal to 

50%. These tables are enclosed as Appendix 4. 

 Since each cut to the data resulted in a model that is more adaptive to variations of the 

response, the decision was made to try estimating three models using the advanced modeling 

framework; one model for each time of day at the partial segment: 

- morning model for 7:00-10:59; 

- midday model for 11:00-15:00; 

- afternoon model for 15:00-20:00. 

 In selecting the time period for each model, care has been taken not too make periods too 

long, but nevertheless long enough to capture both beginning and end of the rush hour if 

possible; or either of those for longer (i.e. afternoon) rush hour. Each of these models has a 

slightly different set of covariates, as covariates with large p-values have been rejected (one at at 

a time) and model refitted with a reduced set when necessary. The detailed results are reviewed 

in the following section. 

5.4.3 Model Diagnostics and Results 

From the previous section, three models have been estimated on the partial road segment, each 

for a different time of day. Because the number of observations for each model is very large,    
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Q-Q plots, studentized residual plots, Cook’s distance plots, or any other standard plotting 

diagnostics to test the presence of heteroskedasticity and outliers are infeasible. For this reason – 

and also for the fact that outliers are not quite possible since the source variable for the response 

is bounded and covariates are designed and controlled by us – we have decided to trust the 

theoretical foundations of linear correlation modeling laid out by Bartlett (1993) and tested as 

described in Asuero, Sayago and González (2006).  

 The three models presented in Table 4 below are using the advanced building concept, as 

it offered better fit than its simple counterpart at any stage of development described previously.  

Table 4 Summary of the Final Models Estimated for Partial Segment of I-10 E   

 
MORNING MIDDAY AFTERNOON 

  adj. R2 = 0.6501 adj. R2 = 0.6189 adj. R2 = 0.5405 
Variable Estimate t-statistic Estimate t-statistic Estimate  t-statistic 
intercept 1.146 893.62 1.201 961.52 1.023 1199.53 
miles -0.3859 -121.8 -0.4229 -137.09 -0.2075 -110.57 
timediff -0.006456 -70.5 -0.008089 -325.99 -0.0068845 -166.88 
miles^2 0.007377 57.42 0.007032 56.4 0.008900 103.53 
timediff^2 1.314E-05 130.16 1.449E-05 147.41 1.409E-05 326.85 
miles*timediff 0.001616 40.03 0.002297 73.95 0.001147 59.32 
miles*state 0.05589 59.43 0.02229 24.35 0.02027 30.33 
timediff*state -0.0002632 -9.49 -0.0003689 -15.1 -0.0004872 -34.01 
miles*timediff*state -0.0002045 -16.97 7.099E-05 6.24 -7.917E-05 -11.24 
miles*lanes 0.03593 54.31 0.04913 76.29 0.009453 22.61 
timediff*lanes -0.0004985 -26.67 --------------------- 0.0001714 18.7 
miles*timediff*lanes -9.987E-05 -11.67 -0.0002986 -45.52 -0.0001322 -30.23 
miles*RN_dummy 0.01206 26.48 -0.01510 -34.06 --------------------- 
timediff*RN_dummy 0.0001859 14.13 -0.0002644 -20.88 -0.0004015 -57.04 
miles*timediff*RN_dummy -8.995E-05 -14.99 0.0001600 27.57 0.0001397 54.41 
miles*NN_dummy 0.02336 22.91 -0.03120 -31.42 0.006763 9.95 
timediff*NN_dummy 0.0004351 16.01 -0.0002547 -9.83 -0.0005855 -39.93 
miles*timediff*NN_dummy -0.0002060 -16.5 0.0002331 19.38 0.0001711 24.68 
 

 Please note that each of the above models offers a comparable or better fit to the raw data 

than the preliminary model has to the averages. However, when comparing the estimates to those 
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from Table 1 (which summarizes regression for the preliminary study), it is important to 

remember that the models above work on Fisher Z transforms instead of correlation directly.  

 Some of the error in all models comes from the fact that, when both miles and timediff are 

equal to 0, intercepts do not transform back to the correct value of 1. This is because all self-

correlations were previously removed from the data sets to avoid program errors during Fisher 

transformation (division by 0).  

 Although coefficients for miles and timediff are all negative, the absolute values for those 

associated with miles are much stronger. Please keep in mind, however, that miles only varies by 

several units, while timediff is given in minutes and its effect should not be underestimated 

(minutes can vary from 0 to 240 or 300, depending on the model). Nevertheless, the negative 

effect of spatial distance is much stronger than that of temporal distance. For example – to use 

most extreme cases – the effect of 1 mile in the midday model is equivalent to 51 minutes, but 

only 28 minutes in the afternoon model. These numbers do include the correction of the 

quadratic terms. Agreeing with the results of the preliminary regression, positive signs of time-

space interaction terms suggest that the rate at which correlation drops decreases with the 

increase of spatial and temporal distance.   

 Positive parameter for the interactions of spatial distance with the level of congestion – 

miles*state – suggests that increasing average congestion level between two locations reduces 

the effect of spatial dimension (reminder: state changes from 0 to 1, when 1 means both locations 

are always unstable). This is quite on the contrary to the temporal dimension. Sign for the 

interaction of state with the time-space interaction term varies from model to model. In the 

overall effect (simulated), higher congestion increases the predicted response for all models. 
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 Average number of lanes – similarly to state – reduces the spatial dimension’s effect 

when there are more lanes available, but also brings more negative drop when combined with 

time-space interaction term. The effect of lanes*timediff varies from model to model, and has 

been insignificant in the midday model. Simulation showed that in the overall effect, adding 

lanes increases the predicted response in both morning and afternoon models. 

 The overall effect of the ramp presence has been shown to slightly reduce or slightly 

increase response estimate in the morning and midday model, respectively, when compared to 

the situation when both locations have ramps (NN_dummy=RN_dummy=0). In both cases the 

effect was smaller when only one reference location had ramp, i.e. NN_dummy induces higher 

overall change than RN_dummy. The exception is the afternoon model, which seems to be 

unaffected by the ramp presence, at least in the simulated scenarios. 

5.4.4 Morning Model Evaluation 

Of the three models presented, one that is fitted to the morning data delivers the best fit. This is 

not surprising, as morning rush hour is much shorter than in the afternoon and trips made by 

morning commuters are typically more predictable and involve less variability than afternoon 

trip patterns. This ‘more-ordered’ morning trip pattern perhaps translates into more ordered and 

easier-to-predict correlation pattern. Morning model begins before and ends after the morning 

peak.  

 Figure 8 presents the observed spatial correlation patterns with indicated p-values and the 

plot of predicted correlation values. Spatial correlation plots show that morning model performs 

well to delineate the correlation trends. Corrections to the function from geometry changes can 

sometimes correctly predict the location, but not necessarily the shape of disturbance in the 

general trend. 
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Figure 8 Morning Model: Observed vs. Predicted Spatial Correlation.    

  a) PM=7.05 at 9:00, b) PM=10.79 at 9:00 

 Figure 9 provides insight into morning models’ performance in the temporal dimension. 

Temporal correlation plots suggest not as even fit of the predicted function to the observed 

values; Figure 9 a) shows similar regression performance to that of the spatial dimension, but 

Figure 9 b) indicates significant prediction error. Nevertheless, the latter one is quite interesting 

as it shows the very steep drop of correlation. The correlation reaches (and remains at) near-zero 

values only minutes after the beginning of the morning rush hour; it shows that morning rush 

effectively filters out any dependencies of early morning with the rest of the day. The smooth 

shape of the temporal predictions is due to the fact that all geometry corrections remain constant 

when spatial dimension is set to 0. 

a) b) 
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Figure 9 Morning Model: Observed vs. Predicted Temporal Correlation.  

  a) PM=6.86 at 10:00, b) PM=8.07 at 7:00 

  

5.4.5 Midday Model Evaluation 

Midday model’s performance places it in the middle between morning and afternoon. It 

encompasses most of the period between the two rush hours and ends well after the beginning of 

the afternoon peak. 

 Figure 10 depicts observed vs. predicted spatial correlation patterns for midday period. 

Spatial correlation at off-peak hours (noon) seems to follow a less ordered, more scattered 

pattern than during the morning peak. Model does not capture that variation, yet it predicts the 

overall trend quite well.  

a) 

b) 
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Figure 10 Midday Model: Observed vs. Predicted Spatial Correlation.    

  a) PM=5.64 at 12:00, b) PM=10.79 at 12:00 

 Figure 11 shows those from the temporal perspective. Both temporal correlation plots are 

done for the same reference time, but the shape of the observed correlation and how well the 

predictions fit are very different. In Figure 11 a), the observed correlations are all very high and 

nearly constant. The regression line looks quite irrelevant in this case; however, during the same 

reference time but at a different location (Figure 11 b)), it performs exceptionally well. The 

suspected explanation for constant correlation might be that this particular location experiences 

little variation in speeds no matter the time. Confirmation of this hypothesis needs further 

investigation in the underlying data. It needs to mentioned, however, that observed temporal 

correlation at this particular location had similar shapes also during morning and afternoon 

hours. 

b) a) 
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Figure 11 Midday Model: Observed vs. Predicted Temporal Correlation.   

  a) PM=5.64 at 14:00, b) PM=8.07 at 14:00 

   

5.4.6 Afternoon Model Evaluation  

Afternoon model delivers the worst fit of the three, but it is still roughly at the same level than 

the fit of the preliminary model. Using analogy to the morning model and typically more chaotic 

nature of the afternoon peak, it is believed that noise in the afternoon trip patterns is the 

underlying cause of the loss in this model’s fit. 

b) 

a) 
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 Figure 12 depicts observed spatial correlation vs. correlation predicted with the afternoon 

model. Figure 13 puts them into the temporal perspective.  

 

Figure 12 Afternoon Model: Observed vs. Predicted Spatial Correlation.    

  a) PM=7.05 at 17:00, b) PM=8.38 at 17:00 

 The afternoon model delivers worst overall fit, but – as plots included in Figures 12 and 

13 show – it can provide a reasonably accurate prediction of correlation in both spatial and 

temporal dimension. Virtually entire horizontal axis scale in Figure 13 is showing periods 

classified as afternoon rush hour – it starts well before 15:00 and ends just before 20:00. While 

the rate of decrease in Figure 13 a) is much more gradual than in Figure 9 b) – the periods in a 

peak nevertheless lose all the dependency not just to off-peak periods, but also to other periods 

within the very peak. 

  

b) a) 
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Figure 13 Afternoon Model: Observed vs. Predicted Temporal Correlation.  

  a) PM=6.86 at 15:00, b) PM=10.07 at 17:00 

    

b) 

a) 
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CHAPTER 6 

CROSS-VALIDATION  

6.1 Background and Motivations 

The regression models described in the previous chapter provide a satisfactory fit to the data 

taken from a single location. To answer the question whether correlation is location-specific – as 

suggested in the preliminary study – the models need to be transferred to other freeway settings 

with different traffic pattern and geometrical arrangement. Cross-validation then aims to test the 

robustness of our models but also to provide insight into how correlation patterns are dependent 

on location. Two distinctive new settings are discussed in the following sections. 

6.2 Location 1: I-10 Westbound 

The first choice for location to cross-validate the models is to use the opposite direction of the 

freeway between the similar range of post miles. Thus, a segment of I-10 W between PM 11.96 

and PM 5.66 is chosen. It is likely that traffic patterns are different from the corresponding 

stretch of I-10 E, since this is the outbound link from downtown Los Angeles. Per Appendix 1, 

road geometries between the two directions are comparable when one notices the frequent ramps, 

but by no means are the geometries mirror reflections of each other. Number of lanes varies 

differently on westbound and ramp arrangement is different. 

 Figure 14 shows observed vs. predicted correlation of all three models in the spatial 

dimension; Figure 15 shows observed vs. predicted temporal correlation. All predictions are 

done using the parameter estimated on I-10 E, applied to I-10 W covariates and transformed back 

to correlation domain. 
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Figure 14  Spatial Correlation Cross-Validation, Observed vs. Predicted (I-10 W).  

  a) Morning: PM=6.58, 9:00, b) Midday: PM=10.45, 12:00, c) Afternoon:  

  PM=11.96, 17:00 

 The spatial correlation plots indicate that both morning and midday models performed 

exceptionally well in fitting to the observed values. Afternoon model suggests slightly more 

prediction error and perhaps underestimates most observations, but it still provides a good 

approximation. The comments for Figure 14 can as well be applied to Figure 15, as again 

morning and midday models deliver good prediction accuracy in contrast with the afternoon, 

which first underestimates, then overestimates correlation. 

 

b) c) a) 
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Figure 15 Temporal Correlation Cross-Validation, Observed vs. Predicted (I-10 W)  

  a) Morning: PM=11.96, 8:30, b) Midday: PM=10.79, 13:00, c) Afternoon:  

  PM=9.38, 15:00 

c) 

a) 

b) 
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6.3 Location 2: I-10 Eastbound (Beginning) 

The second choice for cross-validation with the data at hand is to test the models on the 

eastbound stretch that has not been used for estimation. The overall segment is divided to 

provide a split into two distinctive links with different geometrical characteristics. Therefore, this 

beginning stretch spans over 14 detector stations and ends before a major interchange with 

Venice Boulevard.  

 Figure 16 shows observed vs. predicted spatial correlation plots for all three models. In 

this new setting, all three models suggest a reduced performance. Still, each model retains the 

ability to predict the overall trend of correlation. Observed correlation coefficients tend to be 

more scattered compared to the other two investigated locations, and this increased variability 

cam be noticed during each time of day. 

 Figure 17 shows the performance of models’ predictive accuracy in the temporal 

dimension. Morning and midday plots agree with the comment regarding the spatial plots in that 

the correlation variability increased and that models are incapable of capturing all of the 

variation. Morning plot is additionally interesting because it may be seen as a complement to the 

morning plot shown in Figure 9 b): now, the reference period is after the morning rush hour, but 

still the sudden drop to zero is observed. This time, however, the correlations ‘recover’ and 

periods roughly before 8:00 retained some correlation to the reference. The afternoon temporal 

correlation plot is different from morning and midday, as its variability is significantly smaller, 

which works with benefit to the afternoon model’s fit. 

 All of the comments to the figures regarding model fits pertain only to the situations on 

the presented plots and should not be generalized. Overall performance of each model at each 

location is discussed in detail in the following section.  
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Figure 16 Spatial Correlation Cross-Validation (I-10 E, beginning). Observed vs.  

  Predicted. a) Morning: PM=2.35, 9:00, b) Midday: PM=4.00, 12:00,   

  c) Afternoon: PM=4.00, 17:00 

c) 

b) 

a) 
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Figure 17 Temporal Correlation Cross-Validation (I-10 E, beginning). Observed vs.  

  Predicted. a) Morning: PM=0.17, 10:00, b) Midday: PM=1.77, 14:00 ,   

  c) Afternoon: PM=1.77, 16:00  

c) 

b) 

a) 
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6.4 Cross-Validation Summary 

For proper assessment of the general predictive performance of each model, common and 

objective measures are needed. Please note that R2 can be interpreted as adjusted R2 when the 

sample size used for model estimation is very large. (Models presented in Section 5.4.3 are based 

on sample sizes at least 4.2*105, exact values depending on the model.)  

 Table 5 lists statistics associated with each model at each location. 

Table 5 Predictive Ability of the Regression Models on Three Independent Locations 

 
 
 

 
Est. Sample Cross-validation at: 

MODEL Statistic 
I-10 E (PM 

5.64 - 11.96) 
I-10 W (PM 
11.96-5.66) 

I-10 E (PM 
0.17-5.04) 

MORNING 
bias -0.01466 0.07839 -0.1417 
standard error 0.1600 0.1744 0.2587 
R square 0.6501 0.6198 0.4956 

MIDDAY 
bias -0.01408 0.0186 -0.1623 
standard error 0.1437 0.1418 0.2749 
R square 0.6189 0.6345 0.4592 

AFTERNOON 
bias -0.01200 -0.04899 0.05352 
standard error 0.1323 0.1720 0.1501 
R square 0.5405 0.4192 0.4980 

 

 Per Table 5, the capability of the morning model to correctly predict correlation on the 

westbound direction is about the same level as it achieved on its own sample, although it is 

perhaps slightly more biased; standard error remains roughly unchanged. When the same model 

is applied to the beginning stretch of the eastbound direction, all performance measures indicate 

a reduction of performance. Nevertheless, the model is still able to explain approximately half of 

the variance in the observed correlation.  
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 Cross-validation of the midday model at the westbound sample indicates the same level 

of very low bias and standard error as at its estimation sample, with a slight increase in R2. While 

delivering an impressive result at the opposite direction, the midday regression experiences the 

largest loss of predictive performance at the second cross-validation location.  

 The afternoon model achieves the smallest R2 when fit to the observed data in its 

estimation sample is assessed, but its bias and standard error are at the same time the smallest of 

all models. Although cross-validation to the westbound direction significantly reduced the fit, the 

afternoon model experiences the least performance loss when applied to the beginning stretch of 

the eastbound direction. At both cross-validation locations, it retains the very low level of bias 

and standard error.  

 Each model has a slightly different behavior when applied to independent cross-

validation samples; however, all retain 75% or more of their original predictive ability. The 

developed regression models are capable of explaining significant percentage of variance in the 

observed correlation and the results show that these models can be transferred to new locations 

with some success. 
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CHAPTER 7 

OTHER MODELING STRATEGIES 

Models developed and validated in previous chapters offer the ability for correlation prediction; 

however, their predictions carry some error. The amount of the error varies and depends on both 

a model and its application. As mentioned on many occasions in sections pertaining to model 

building procedures, we have discovered a tradeoff between the number of situations to which a 

model can be applied and model’s predictive performance. In other words, the more general the 

model’s designed application, the worse fit it can deliver.  

 Three time-of-day specific models that we developed are based on data which were 

scaled down from the original dataset. Further split of the day or the segment into shorter lengths 

– though it might improve the fit – would generate even larger family of models and would 

probably make the application process impractical. Thus, we decided to look for a more careful 

choice of readings from the existing datasets with an objective to improve the fit of our models 

while retaining the general range of their applications. 

 Consider a traveler on freeway using the en-route traveler information system to advise 

his or her route choice decisions. If the information for traveler is updated with each ramp he or 

she passes, the driver can use such information to decide whether to continue travelling on 

freeway or exit at the next ramp. Providing information that is too far in advance may not be 

useful to some travelers; too much information at a time may also be too distractive and difficult 

to process while driving. Therefore it is possible that, in models we have discussed before, the 

ability to capture sudden drops or rises in correlation may be somewhat diluted by the models’ 

attempts to provide information that is difficult to actually process. We decided to explore 
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building models that use the pool of predictor variables discussed in Section 5.4.1 and that 

follow the general model architecture outlined in Section 5.4.2.4; at the same time, datasets are 

heavily edited.  

 We propose to model correlation using only observations between adjacent stations. With 

a reference in station i, correlation can only be predicted at stations i-1 and i+1. Under this 

strategy, temporal dimension is not affected and models are built again for morning, midday and 

afternoon. Each time of day is modeled using the full ‘advanced’ set of variables; predictors that 

generate largest p-values are iteratively rejected. Ultimately, a model for each time of day has 

been fitted to the station-to-station data. Table 6 summarizes fit statistics of the three models 

using this alternative approach. 

Table 6 Performance Indicators of Station-to-Station Models  

  
Est. Sample 

MODEL Statistic 
I-10 E (PM 5.64 - 11.96) 
STATION-STATION ONLY 

MORNING* 
bias -0.004063 
standard error 0.06902 
R square 0.9774 

MIDDAY* 
bias -0.003147 
standard error 0.05453 
R square 0.9843 

AFTERNOON* 
bias -0.002852 
standard error 0.05344 
R square 0.9807 

  * despite the same nomenclature, here presented models are not the same   
     as previously described Morning, Midday and Afternoon models  

 All three station-to-station models are able to provide a near-perfect fit to the observed 

correlation. Bias is approximately an order of magnitude smaller than the smallest achieved 

using full sample; standard error is also 30-50% of the original best value. 
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 Ability to achieve this level of fit consistently by all three time-of-day models 

undermines the idea to divide the day into different periods. It is possible that a single model can 

be estimated without scaling down the sample, yet delivering the fit to the data higher than multi-

station models. It is unsure, however, how well station-to-station models would pass the cross-

validation. Further research is needed to address some of these questions. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary 

A more thorough analysis that followed the initial simplified methodology resulted in the 

development of three regression models which model raw 5-minute correlation at the resolution 

of a station and take road geometry and variability of the state of traffic into account. Each model 

passes cross-validation onto two other settings and offers explanation of a significant portion of 

variance in correlation at multiple locations; however, as in Samaranayake, Blandin and Bayen 

(2011), the predicted values tend to have lower variability than observed. 

  All in all, the findings of the initial stage of the analysis are confirmed later in the paper 

– the primary factor for correlation is the spatial distance. In temporal domain, the slope of 

correlation trend tends to be more affected by the traffic state. Models agree that increasing 

congestion level creates a ‘correlation retaining’ effect – the rate of decrease with distance tends 

to be lower. Relatively small corrections to time-space effects are added when road geometry 

changes occur; however, it is believed that these parameters significantly improve the overall fit 

and play an important role – together with traffic state – when a model is transferred to a new 

physical setting. Cross-validation results indicate that at least 75% of each model’s predictive 

capability is retained when the models are applied to new physical locations. Thus, we can 

conclude with confidence that the models are transferrable.  
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8.2 Recommendations for Future Research 

While assumption may be true that I-10 westbound direction, or that beginning segment of I-10 

eastbound are independent from the latter stretch of I-10 E – it is also possible that it is not quite 

so. One way to check that would be to do a cross-validation onto a very different freeway, say I-

880 in San Francisco Bay. Once successful, transferability of findings would be confirmed on 

even stronger grounds.  

 Although an improvement was anticipated, station-to-station sampling approach brought 

a fit to the observed correlation at an unprecedented level. Nevertheless, this thesis only 

scratches the surface of this approach, so this venue should be further investigated. Given the 

near-perfect predictions of these three models, future research should consider going back to 

whole-day data, or even 24-hour data. Possibly, much of the original fit could be retained while 

achieving simplicity of a single universal model. Such model should also be validated using an 

independent sample.  

 Lastly, this research only attempts to model correlation in a freeway setting, where traffic 

stream between consecutive exits can reasonably be assumed to be a continuous flow. Extending 

the methodology onto more chaotic arterials where there is no control for accessing or exiting the 

stream is expected to be a very challenging task in itself. Hopefully, this work will provide some 

useful foundation for extensions onto arterial roadways, and then onto entire transportation 

networks.  
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APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

58 
 

APPENDIX 1 

LAYOUT SCHEMATICS OF INTERSTATE 10 BETWEEN PM 0 AND PM 12.50, BOTH 
DIRECTIONS 
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APPENDIX 2 

DATA FILTERING PROCESS – FREQUENCY OF % OBSERVED DATA 
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APPENDIX 3 

SPEED-FLOW DIAGRAMS FOR I-10 E-W WITH CONGESTION THRESHOLDS 
INDICATED 

A. EASTBOUND DIRECTION 
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B. WESTBOUND DIRECTION 
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APPENDIX 4 

TRAFFIC CONDITION FREQUENCY TABLES FOR DAYTIME PERIODS 
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